
libcppa

A C++ library for actor programming

User Manual
libcppa version 0.9.0 PRERELEASE

Dominik Charousset

March 18, 2014

Contents

1 Introduction 1

1.1 Actor Model . 1

1.2 Terminology . 1

1.2.1 Actor Address . 1

1.2.2 Actor Handle . 2

1.2.3 Untyped Actors . 2

1.2.4 Typed Actor . 2

1.2.5 Spawning . 2

1.2.6 Monitoring . 2

1.2.7 Link . 2

2 First Steps 3

2.1 Features Overview . 3

2.2 Supported Compilers . 3

2.3 Supported Operating Systems . 3

2.4 Hello World Example . 4

3 Copy-On-Write Tuples 5

3.1 Dynamically Typed Tuples . 5

3.2 Casting Tuples . 6

4 Pattern Matching 7

4.1 Basics . 7

4.2 Reducing Redundancy with “arg match” and “on arg match” 8

4.3 Atoms . 8

4.4 Wildcards . 9

4.5 Guards . 9

4.5.1 Placeholder Interface . 10

4.5.2 Examples for Guard Expressions . 10

4.6 Projections and Extractors . 11

5 Actors 12

5.1 Implicit self Pointer . 12

5.2 Interface . 13

6 Sending Messages 14

6.1 Replying to Messages . 15

6.2 Delaying Messages . 15

6.3 Forwarding Messages in Untyped Actors . 16

7 Receiving Messages 17

7.1 Class-based actors . 17

7.2 Nesting Receives Using become/unbecome . 19

7.3 Timeouts . 20

7.4 Skipping Messages . 21

8 Synchronous Communication 22

8.1 Error Messages . 22

8.2 Receive Response Messages . 23

8.3 Synchronous Failures and Error Handlers . 23

8.3.1 Continuations for Event-based Actors . 24

9 Management & Error Detection 25

9.1 Links . 25

9.2 Monitors . 25

9.3 Error Codes . 26

9.4 Attach Cleanup Code to an Actor . 26

10 Spawning Actors 27

11 Message Priorities 28

12 Network Transparency 29

12.1 Publishing of Actors . 29

12.2 Connecting to Remote Actors . 29

13 Group Communication 30

13.1 Anonymous Groups . 30

13.2 Local Groups . 30

13.3 Spawn Actors in Groups . 30

14 Platform-Independent Type System 31

14.1 User-Defined Data Types in Messages . 31

15 Blocking API 32

15.1 Receiving Messages . 32

15.2 Receiving Synchronous Responses . 34

16 Strongly Typed Actors 35

16.1 Spawning Typed Actors . 35

16.2 Class-based Typed Actors . 36

17 Common Pitfalls 38

17.1 Event-Based API . 38

17.2 Synchronous Messages . 38

17.3 Sending Messages . 38

17.4 Sharing . 38

17.5 Constructors of Class-based Actors . 38

18 Appendix 39

18.1 Class option . 39

18.2 Using aout – A Concurrency-safe Wrapper for cout 40

INTRODUCTION

1 Introduction

Before diving into the API of libcppa, we would like to take the opportunity to discuss the concepts
behind libcppa and to explain the terminology used in this manual.

1.1 Actor Model

The actor model describes concurrent entities – actors – that do not share state and communicate
only via message passing. By decoupling concurrently running software components via message
passing, the actor model avoids race conditions by design. Actors can create – “spawn” – new
actors and monitor each other to build fault-tolerant, hierarchical systems. Since message passing
is network transparent, the actor model applies to both concurrency and distribution.

When dealing with dozens of cores, mutexes, semaphores and other threading primitives are
the wrong level of abstraction. Implementing applications on top of those primitives has proven
challenging and error-prone. Additionally, mutex-based implementations can cause queueing and
unmindful access to (even distinct) data from separate threads in parallel can lead to false sharing
– both decreasing performance significantly, up to the point that an application actually runs slower
when adding more cores.

The actor model has gained momentum over the last decade due to its high level of abstraction
and its ability to make efficient use of multicore and multiprocessor machines. However, the
actor model has not yet been widely adopted in the native programming domain. With libcppa,
we contribute a library for actor programming in C++ as open source software to ease native
development of concurrent as well as distributed systems. In this regard, libcppa follows the C++
philosophy “building the highest abstraction possible without sacrificing performance”.

1.2 Terminology

You will find that libcppa has not simply adopted exiting implementations based on the actor model
such as Erlang or the Akka library. Instead, libcppa aims to provide a modern C++ API allowing for
type-safe as well as dynamically typed messaging. Hence, most aspects of our system are familiar
to developers having experience with other actor systems, but there are also slight differences in
terminology. However, neither libcppa nor this manual require any foreknowledge.

1.2.1 Actor Address

In libcppa, each actor has a (network-wide) unique logical address that can be used to identify and
monitor it. However, the address can not be used to send a message to an actor. This limitation
is due to the fact that the address does not contain any type information about the actor. Hence, it
would not be safe to send it any message, because the actor might use a strictly typed messaging
interface not accepting the given message.

1

INTRODUCTION

1.2.2 Actor Handle

An actor handle contains the address of an actor along with its type information. In order to send
an actor a message, one needs to have a handle to it – the address alone is not sufficient. The
distinction between handles and addresses – which is unique to libcppa when comparing it to
other actor systems – is a consequence of the design decision to support both untyped and typed
actors.

1.2.3 Untyped Actors

An untyped actor does not constrain the type of messages it receives, i.e., a handle to an untyped
actor accepts any kind of message. That does of course not mean that untyped actors must
handle all possible types of messages. Choosing typed vs untyped actors is mostly a matter of
taste. Untyped actors allow developers to build prototypes faster, while typed actors allow the
compiler to fetch more errors at compile time.

1.2.4 Typed Actor

A typed actor defines its messaging interface, i.e., both input and output types, in its type. This
allows the compiler to check message types statically.

1.2.5 Spawning

“Spawning” an actor means to create and run a new actor.

1.2.6 Monitoring

A monitored actor sends a “down message” to all actors monitoring it as part of its termination.
This allows actors to supervise other actors and to take measures when one of the supervised
actors failed, i.e., terminated with a non-normal exit reason.

1.2.7 Link

A link is bidirectional connection between two actors. Each actor sends an “exit message” to all
of its links as part of its termination. Unlike down messages (cf. 1.2.6), the default behavior for
received exit messages causes the receiving actor to terminate for the same reason if the link
has failed, i.e., terminated with a non-normal exit reason. This allows developers to create a set
of actors with the guarantee that either all or no actors are alive. The default behavior can be
overridden, i.e., exit message can be “trapped”. When trapping exit messages, they are received
as any other ordinary message and can be handled by the actor.

2

FIRST STEPS

2 First Steps

To compile libcppa, you will need CMake and a C++11 compiler. To get and compile the sources,
open a terminal (on Linux or Mac OS X) and type:

git clone git://github.com/Neverlord/libcppa.git
cd libcppa
./configure
make
make install [as root, optional]

It is recommended to run the unit tests as well:

make test

Please submit a bug report that includes (a) your compiler version, (b) your OS, and (c) the content
of the file build/Testing/Temporary/LastTest.log if an error occurs.

2.1 Features Overview

• Lightweight, fast and efficient actor implementations
• Network transparent messaging
• Error handling based on Erlang’s failure model
• Pattern matching for messages as internal DSL to ease development
• Thread-mapped actors for soft migration of existing applications
• Publish/subscribe group communication

2.2 Supported Compilers

• GCC ≥ 4.7
• Clang ≥ 3.2

2.3 Supported Operating Systems

• Linux
• Mac OS X
• Note for MS Windows: libcppa relies on C++11 features such as variadic templates. We

will support this platform as soon as Microsoft’s compiler implements all required C++11
features.

3

FIRST STEPS

2.4 Hello World Example

#include <string>
#include <iostream>

#include "cppa/cppa.hpp"

using namespace std;
using namespace cppa;

behavior mirror(event_based_actor* self) {
// return the (initial) actor behavior
return {

// a handler for messages containing a single string
// that replies with a string
[=](const string& what) -> string {

// prints "Hello World!" via aout
// (thread-safe cout wrapper)
aout(self) << what << endl;
// terminates this actor
// (’become’ otherwise loops forever)
self->quit();
// reply "!dlroW olleH"
return string(what.rbegin(), what.rend());

}
};

}

void hello_world(event_based_actor* self, const actor& buddy) {
// send "Hello World!" to our buddy ...
self->sync_send(buddy, "Hello World!").then(

// ... wait for a response ...
[=](const string& what) {

// ... and print it
aout(self) << what << endl;

}
);

}

int main() {
// create a new actor that calls ’mirror()’
auto mirror_actor = spawn(mirror);
// create another actor that calls ’hello_world(mirror_actor)’;
spawn(hello_world, mirror_actor);
// wait until all other actors we have spawned are done
await_all_actors_done();
// run cleanup code before exiting main
shutdown();

}

4

COPY-ON-WRITE TUPLES

3 Copy-On-Write Tuples

The message passing implementation of libcppa uses tuples with call-by-value semantic. Hence,
it is not necessary to declare message types, though, libcppa allows users to use user-defined
types in messages (see Section 14.1). A call-by-value semantic would cause multiple copies of
a tuple if it is send to multiple actors. To avoid unnecessary copying overhead, libcppa uses a
copy-on-write tuple implementation. A tuple is implicitly shared between any number of actors, as
long as all actors demand only read access. Whenever an actor demands write access, it has to
copy the data first if more than one reference to it exists. Thus, race conditions cannot occur and
each tuple is copied only if necessary.

The interface of cow_tuple strictly distinguishes between const and non-const access. The
template function get returns an element as immutable value, while get_ref explicitly returns a
mutable reference to the required value and detaches the tuple if needed. We do not provide a
const overload for get, because this would cause to unintended, and thus unnecessary, copying
overhead.

auto x1 = make_cow_tuple(1, 2, 3); // cow_tuple<int, int, int>
auto x2 = x1; // cow_tuple<int, int, int>
assert(&get<0>(x1) == &get<0>(x2)); // point to the same data
get_ref<0>(x1) = 10; // detaches x1 from x2
//get<0>(x1) = 10; // compiler error
assert(get<0>(x1) == 10); // x1 is now {10, 2, 3}
assert(get<0>(x2) == 1); // x2 is still {1, 2, 3}
assert(&get<0>(x1) != &get<0>(x2)); // no longer the same

3.1 Dynamically Typed Tuples

The class any_tuple represents a tuple without static type information. All messages send
between actors use this tuple type. The type information can be either explicitly accessed for
each element or the original tuple, or a subtuple of it, can be restored using tuple_cast. Users
of libcppa usually do not need to know about any_tuple, since it is used “behind the scenes”.
However, any_tuple can be created from a cow_tuple or by using make_any_tuple, as
shown below.

auto x1 = make_cow_tuple(1, 2, 3); // cow_tuple<int, int, int>
any_tuple x2 = x1; // any_tuple
any_tuple x3 = make_cow_tuple(10, 20); // any_tuple
auto x4 = make_any_tuple(42); // any_tuple

5

COPY-ON-WRITE TUPLES

3.2 Casting Tuples

The function tuple_cast restores static type information from an any_tuple object. It returns
an option (see Section 18.1) for a cow_tuple of the requested types.

auto x1 = make_any_tuple(1, 2, 3);
auto x2_opt = tuple_cast<int, int, int>(x1);
assert(x2_opt.valid());
auto x2 = *x2_opt;
assert(get<0>(x2) == 1);
assert(get<1>(x2) == 2);
assert(get<2>(x2) == 3);

The function tuple_cast can be used with wildcards (see Section 4.4) to create a view to a
subset of the original data. No elements are copied, unless the tuple becomes detached.

auto x1 = make_cow_tuple(1, 2, 3);
any_tuple x2 = x1;
auto x3_opt = tuple_cast<int, anything, int>(x2);
assert(x3_opt.valid());
auto x3 = *x3_opt;
assert(get<0>(x3) == 1);
assert(get<1>(x3) == 3);
assert(&get<0>(x3) == &get<0>(x1));
assert(&get<1>(x3) == &get<2>(x1));

6

PATTERN MATCHING

4 Pattern Matching

C++ does not provide pattern matching facilities. A general pattern matching solution for arbitrary
data structures would require a language extension. Hence, we decided to restrict our implemen-
tation to tuples, to be able to use an internal domain-specific language approach.

4.1 Basics

A match expression begins with a call to the function on, which returns an intermediate object
providing the member function when and operator>>. The right-hand side of the operator
denotes a callback, usually a lambda expression, that should be invoked if a tuple matches the
types given to on, as shown in the example below.

on<int>() >> [](int i) { /*...*/ }
on<int, float>() >> [](int i, float f) { /*...*/ }
on<int, int, int>() >> [](int a, int b, int c) { /*...*/ }

The result of operator>> is a match statement. A partial function can consist of any number of
match statements. At most one callback is invoked, since the evaluation stops at the first match.

partial_function fun {
on<int>() >> [](int i) {

// case1
},
on<int>() >> [](int i) {

// case2; never invoked, since case1 always matches first
}

};

The function “on” can be used in two ways. Either with template parameters only or with function
parameters only. The latter version deduces all types from its arguments and matches for both
type and value. To match for any value of a given type, “val” can be used, as shown in the
following example.

on(42) >> [](int i) { assert(i == 42); }
on("hello world") >> [] { /* ... */ }
on("print", val<std::string>) >> [](const std::string& what) {

// ...
}

Note: The given callback can have less arguments than the pattern. But it is only allowed to skip
arguments from left to right.

on<int, float, double>() >> [](double) { /*...*/ } // ok
on<int, float, double>() >> [](float, double) { /*...*/ } // ok
on<int, float, double>() >> [](int, float, double) { /*...*/ } // ok

on<int, float, double>() >> [](int i) { /*...*/ } // compiler error

7

PATTERN MATCHING

4.2 Reducing Redundancy with “arg_match” and “on_arg_match”

Our previous examples always used the most verbose form, which is quite redundant, since you
have to type the types twice – as template parameter and as argument type for the lambda. To
avoid such redundancy, arg_match can be used as last argument to the function on. This causes
the compiler to deduce all further types from the signature of the given callback.

on<int, int>() >> [](int a, int b) { /*...*/ }
// is equal to:
on(arg_match) >> [](int a, int b) { /*...*/ }

Note that the second version does call onwithout template parameters. Furthermore, arg_match
must be passed as last parameter. If all types should be deduced from the callback signature,
on_arg_match can be used. It is equal to on(arg_match). However, when using a pattern to
initialize the behavior of an actor, on_arg_match is used implicitly whenever a functor is passed
without preceding it with an on clause.

on_arg_match >> [](const std::string& str) { /*...*/ }

4.3 Atoms

Assume an actor provides a mathematical service for integers. It takes two arguments, performs
a predefined operation and returns the result. It cannot determine an operation, such as multiply
or add, by receiving two operands. Thus, the operation must be encoded into the message. The
Erlang programming language introduced an approach to use non-numerical constants, so-called
atoms, which have an unambiguous, special-purpose type and do not have the runtime overhead
of string constants. Atoms are mapped to integer values at compile time in libcppa. This map-
ping is guaranteed to be collision-free and invertible, but limits atom literals to ten characters and
prohibits special characters. Legal characters are “_0-9A-Za-z” and the whitespace character.
Atoms are created using the constexpr function atom, as the following example illustrates.

on(atom("add"), arg_match) >> [](int a, int b) { /*...*/ },
on(atom("multiply"), arg_match) >> [](int a, int b) { /*...*/ },
// ...

Note: The compiler cannot enforce the restrictions at compile time, except for a length check. The
assertion atom("!?") != atom("?!") is not true, because each invalid character is mapped
to the whitespace character.

8

PATTERN MATCHING

4.4 Wildcards

The type anything can be used as wildcard to match any number of any types. A pattern created
by on<anything>() or its alias others() is useful to define a default case. For patterns
defined without template parameters, the constexpr value any_vals can be used as function
argument. The constant any_vals is of type anything and is nothing but syntactic sugar for
defining patterns.

on<int, anything>() >> [](int i) {
// tuple with int as first element

},
on(any_vals, arg_match) >> [](int i) {

// tuple with int as last element
// "on(any_vals, arg_match)" is equal to "on(anything{}, arg_match)"

},
others() >> [] {

// everything else (default handler)
// "others()" is equal to "on<anything>()" and "on(any_vals)"

}

4.5 Guards

Guards can be used to constrain a given match statement by using placeholders, as the following
example illustrates.

using namespace cppa::placeholders; // contains _x1 - _x9

on<int>().when(_x1 % 2 == 0) >> [] {
// int is even

},
on<int>() >> [] {

// int is odd
}

Guard expressions are a lazy evaluation technique. The placeholder _x1 is substituted with the
first value of a given tuple. All binary comparison and arithmetic operators are supported, as well
as && and ||. In addition, there are three functions designed to be used in guard expressions:
gref (“guard reference”), gval (“guard value”), and gcall (“guard function call”). The function
gref creates a reference wrapper, while gval encloses a value. It is similar to std::ref but it
is always const and “lazy”. A few examples to illustrate some pitfalls:

int val = 42;

on<int>().when(_x1 == val) // (1) matches if _x1 == 42
on<int>().when(_x1 == gref(val)) // (2) matches if _x1 == val
on<int>().when(_x1 == std::ref(val)) // (3) ok, because of placeholder
others().when(gref(val) == 42) // (4) matches everything

// as long as val == 42
others().when(std::ref(val) == 42) // (5) compiler error

9

PATTERN MATCHING

Statement (5) is evaluated immediately and returns a boolean, whereas statement (4) creates
a valid guard expression. Thus, you should always use gref instead of std::ref to avoid errors.

The second function, gcall, encapsulates a function call. Its usage is similar to std::bind, but
there is also a short version for unary functions: gcall(fun, _x1) is equal to _x1(fun).

auto vec_sorted = [](const std::vector<int>& vec) {
return std::is_sorted(vec.begin(), vec.end());

};

on<std::vector<int>>().when(gcall(vec_sorted, _x1)) // is equal to:
on<std::vector<int>>().when(_x1(vec_sorted)))

4.5.1 Placeholder Interface

template<int X>
struct guard_placeholder;

Member functions (x represents the value at runtime, y represents an iterable container)

size() Returns x.size()
empty() Returns x.empty()
not_empty() Returns !x.empty()
front() Returns an option (see Section 18.1) to x.front()

in(y) Returns true if y contains x, false otherwise
not_in(y) Returns !in(y)

4.5.2 Examples for Guard Expressions

using namespace std;
typedef vector<int> ivec;

vector<string> strings{"abc", "def"};

on_arg_match.when(_x1.front() == 0) >> [](const ivec& v) {
// note: we don’t have to check whether _x1 is empty in our guard,
// because ’_x1.front()’ returns an option for a
// reference to the first element
assert(v.size() >= 1);
assert(v.front() == 0);

},
on<int>().when(_x1.in({10, 20, 30})) >> [](int i) {

assert(i == 10 || i == 20 || i == 30);
},
on<string>().when(_x1.not_in(strings)) >> [](const string& str) {

assert(str != "abc" && str != "def");
},
on<string>().when(_x1.size() == 10) >> [](const string& str) {

// ...
}

10

PATTERN MATCHING

4.6 Projections and Extractors

Projections perform type conversions or extract data from a given input. If a callback expects an
integer but the received message contains a string, a projection can be used to perform a type
conversion on-the-fly. This conversion should be free of side-effects and, in particular, shall not
throw exceptions, because a failed projection is not an error. A pattern simply does not match if a
projection failed. Let us have a look at a simple example.

auto intproj = [](const string& str) -> option<int> {
char* endptr = nullptr;
int result = static_cast<int>(strtol(str.c_str(), &endptr, 10));
if (endptr != nullptr && *endptr == ’\0’) return result;
return {};

};
partial_function fun {

on(intproj) >> [](int i) {
// case 1: successfully converted a string

},
on_arg_match >> [](const string& str) {

// case 2: str is not an integer
}

};

The lambda intproj is a string⇒ int projection, but note that it does not return an integer.
It returns option<int>, because the projection is not guaranteed to always succeed. An empty
option indicates, that a value does not have a valid mapping to an integer. A pattern does not
match if a projection failed.

Note: Functors used as projection must take exactly one argument and must return a value.
The types for the pattern are deduced from the functor’s signature. If the functor returns an
option<T>, then T is deduced.

11

ACTORS

5 Actors

libcppa provides several actor implementations, each covering a particular use case. The class
local_actor is the base class for all implementations, except for (remote) proxy actors. Hence,
local_actor provides a common interface for actor operations like trapping exit messages or
finishing execution. The default actor implementation in libcppa is event-based. Event-based
actors have a very small memory footprint and are thus very lightweight and scalable. Context-
switching actors are used for actors that make use of the blocking API (see Section 15), but do
not need to run in a separate thread. Context-switching and event-based actors are scheduled
cooperatively in a thread pool. Thread-mapped actors can be used to opt-out of this cooperative
scheduling.

5.1 Implicit self Pointer

When using a function or functor to implement an actor, the first argument can be used to capture
a pointer to the actor itself. The type of this pointer is event_based_actor* per default and
blocking_actor* when using the blocking_api flag. When dealing with typed actors, the
types are typed_event_based_actor<...>* and typed_blocking_actor<...>*.

12

ACTORS

5.2 Interface

class local_actor;

Member functions

quit(uint32_t reason = normal) Finishes execution of this actor

Observers

bool trap_exit() Checks whether this actor traps exit messages

any_tuple last_dequeued()
Returns the last message that was dequeued from
the actor’s mailbox
Note: Only set during callback invocation

actor_addr last_sender()
Returns the sender of the last dequeued message
Note: Only set during callback invocation

vector<group> joined_groups() Returns all subscribed groups

Modifiers

void trap_exit(bool enabled) Enables or disables trapping of exit messages
void join(const group& g) Subscribes to group g
void leave(const group& g) Unsubscribes group g

void on_sync_failure(auto fun)

Sets a handler, i.e., a functor taking no argu-
ments, for unexpected synchronous response mes-
sages (default action is to kill the actor for reason
unhandled_sync_failure)

void on_sync_timeout(auto fun)

Sets a handler, i.e., a functor taking no ar-
guments, for timed_sync_send timeout mes-
sages (default action is to kill the actor for reason
unhandled_sync_timeout)

void monitor(actor_ptr whom)
Adds a unidirectional monitor to whom (see Section
9.2)

void demonitor(actor_ptr whom) Removes a monitor from whom

bool has_sync_failure_handler()
Checks wheter this actor has a user-defined sync fail-
ure handler

13

SENDING MESSAGES

6 Sending Messages

Messages can be sent by using the member function send or send_tuple. The variadic tem-
plate function send has the following signature.

template<typename... Args>
void send(actor whom, Args&&... what);

The variadic template pack what... is converted to a dynamically typed tuple (see Section 3.1)
and then enqueued to the mailbox of whom.

Using the function send is more compact, but does not have any other benefit. However, note
that you should not use send if you already have an instance of any_tuple, because it creates
a new tuple containing the old one.

void some_fun(event_based_actor* self) {
actor other = spawn(...);
auto msg = make_any_tuple(1, 2, 3);
self->send(other, msg); // oops, creates a new tuple containing msg
self->send_tuple(other, msg); // ok

}

14

SENDING MESSAGES

6.1 Replying to Messages

The return value of a message handler is used as response message. Actors can also use the
result of a sync_send to answer to a request, as shown below.

void client(event_based_actor* self, const actor& master) {
become (

on("foo", arg_match) >> [=](const string& request) -> string {
return self->sync_send(master, atom("bar"), request).then(

on_arg_match >> [=](const std::string& response) {
return response;

}
);

}
);

};

6.2 Delaying Messages

Messages can be delayed, e.g., to implement time-based polling strategies, by using one of
delayed_send, delayed_send_tuple, delayed_reply, or delayed_reply_tuple. The
following example illustrates a polling strategy using delayed_send.

behavior poller(event_based_actor* self) {
self->delayed_send(self, std::chrono::seconds(1), atom("poll"));
return {

on(atom("poll")) >> [] {
// poll a resource
// ...
// schedule next polling
self->delayed_send(self, std::chrono::seconds(1), atom("poll"));

}
};

}

15

SENDING MESSAGES

6.3 Forwarding Messages in Untyped Actors

The member function forward_to forwards the last dequeued message to an other actor. For-
warding a synchronous message will also transfer responsibility for the request, i.e., the receiver
of the forwarded message can reply as usual and the original sender of the message will receive
the response. The following diagram illustrates forwarding of a synchronous message from actor
B to actor C.

A B C
--(sync_send)-->	
	--(forward_to)->
X	---\
	<--/
<-------------(reply)--------------	
X	
---\	
	handle
	response
<--/	
X

The forwarding is completely transparent to actor C, since it will see actor A as sender of the
message. However, actor A will see actor C as sender of the response message instead of actor
B and thus could recognize the forwarding by evaluating self->last_sender().

16

RECEIVING MESSAGES

7 Receiving Messages

The current behavior of an actor is its response to the next incoming message and includes (a)
sending messages to other actors, (b) creation of more actors, and (c) setting a new behavior.

An event-based actor, i.e., the default implementation in libcppa, uses become to set its behavior.
The given behavior is then executed until it is replaced by another call to become or the actor
finishes execution.

7.1 Class-based actors

A class-based actor is a subtype of event_based_actor and must implement the pure virtual
member function make_behavior returning the initial behavior.

class printer : public event_based_actor {
behavior make_behavior() override {

return {
others() >> [] {

cout << to_string(last_received()) << endl;
}

};
}

};

Another way to implement class-based actors is provided by the class sb_actor (“State-Based
Actor”). This base class simply returns init_state (defined in the subclass) from its implemen-
tation for make_behavior.

struct printer : sb_actor<printer> {
behavior init_state {

others() >> [] {
cout << to_string(self->last_received()) << endl;

}
};

};

Note that sb_actor uses the Curiously Recurring Template Pattern. Thus, the derived class must
be given as template parameter. This technique allows sb_actor to access the init_state

member of a derived class. The following example illustrates a more advanced state-based actor
that implements a stack with a fixed maximum number of elements.

17

RECEIVING MESSAGES

class fixed_stack : public sb_actor<fixed_stack> {

friend class sb_actor<fixed_stack>;

size_t max_size;

vector<int> data;

behavior full;
behavior filled;
behavior empty;

behavior& init_state = empty;

public:

fixed_stack(size_t max) : max_size(max) {
full = (

on(atom("push"), arg_match) >> [=](int) { /* discard */ },
on(atom("pop")) >> [=]() -> cow_tuple<atom_value, int> {

auto result = data.back();
data.pop_back();
become(filled);
return {atom("ok"), result};

}
);
filled = (

on(atom("push"), arg_match) >> [=](int what) {
data.push_back(what);
if (data.size() == max_size) become(full);

},
on(atom("pop")) >> [=]() -> cow_tuple<atom_value, int> {

auto result = data.back();
data.pop_back();
if (data.empty()) become(empty);
return {atom("ok"), result};

}
);
empty = (

on(atom("push"), arg_match) >> [=](int what) {
data.push_back(what);
become(filled);

},
on(atom("pop")) >> [=] {

return atom("failure");
}

);

}

};

18

RECEIVING MESSAGES

7.2 Nesting Receives Using become/unbecome

Since become does not block, an actor has to manipulate its behavior stack to achieve nested
receive operations. An actor can set a new behavior by calling become with the keep_behavior
policy to be able to return to its previous behavior later on by calling unbecome, as shown in the
example below.

// receives {int, float} sequences
behavior testee(event_based_actor* self) {
return {

[=](int value1) {
self->become (

// the keep_behavior policy stores the current behavior
// on the behavior stack to be able to return to this
// behavior later on by calling unbecome()
keep_behavior,
[=](float value2) {

cout << value1 << " => " << value2 << endl;
// restore previous behavior
self->unbecome();

}
);

}
};

}

An event-based actor finishes execution with normal exit reason if the behavior stack is empty
after calling unbecome. The default policy of become is discard_behavior that causes an
actor to override its current behavior. The policy flag must be the first argument of become.

Note: the message handling in libcppa is consistent among all actor implementations: unmatched
messages are never implicitly discarded if no suitable handler was found. Hence, the order of
arrival is not important in the example above. This is unlike other event-based implementations of
the actor model such as Akka for instance.

19

RECEIVING MESSAGES

7.3 Timeouts

A behavior set by become is invoked whenever a new messages arrives. If no message ever
arrives, the actor would wait forever. This might be desirable if the actor only provides a service
and should not do anything else. But often, we need to be able to recover if an expected messages
does not arrive within a certain time period. The following examples illustrates the usage of after
to define a timeout.

#include <chrono>
#include <iostream>
#include "cppa/cppa.hpp"

using std::endl;

behavior eager_actor(event_based_actor* self) {
return {

[](int i) { /* ... */ },
[](float i) { /* ... */ },
others() >> [] { /* ... */ },
after(std::chrono::seconds(10)) >> [] {

aout(self) << "received nothing within 10 seconds..." << endl;
// ...

}
};

}

Callbacks given as timeout handler must have zero arguments. Any number of patterns can pre-
cede the timeout definition, but “after” must always be the final statement. Using a zero-duration
timeout causes the actor to scan its mailbox once and then invoke the timeout immediately if no
matching message was found.

libcppa supports timeouts using minutes, seconds, milliseconds and microseconds.
However, note that the precision depends on the operating system and your local work load.
Thus, you should not depend on a certain clock resolution.

20

RECEIVING MESSAGES

7.4 Skipping Messages

Unmatched messages are skipped automatically by libcppa’s runtime system. This is true for all
actor implementations. To allow actors to skip messages manually, skip_message can be used.
This is in particular useful whenever an actor switches between behaviors, but wants to use a
default rule created by others() to filter messages that are not handled by any of its behaviors.

The following example illustrates a simple server actor that dispatches requests to workers. Af-
ter receiving an ’idle’ message, it awaits a request that is then forwarded to the idle worker.
Afterwards, the server returns to its initial behavior, i.e., awaits the next ’idle’ message. The
server actor will exit for reason user_defined whenever it receives a message that is neither a
request, nor an idle message.

behavior server(event_based_actor* self) {
auto die = [=] { self->quit(exit_reason::user_defined); };
return {

on(atom("idle")) >> [=] {
auto worker = last_sender();
self->become (

keep_behavior,
on(atom("request")) >> [=] {

// forward request to idle worker
self->forward_to(worker);
// await next idle message
self->unbecome();

},
on(atom("idle")) >> skip_message,
others() >> die

);
},
on(atom("request")) >> skip_message,
others() >> die

};
}

21

SYNCHRONOUS COMMUNICATION

8 Synchronous Communication

libcppa supports both asynchronous and synchronous communication. The member functions
sync_send and sync_send_tuple send synchronous request messages.

template<typename... Args>
__unspecified__ sync_send(actor_ptr whom, Args&&... what);

__unspecified__ sync_send_tuple(actor_ptr whom, any_tuple what);

template<typename Duration, typename... Args>
__unspecified__ timed_sync_send(actor_ptr whom,

Duration timeout,
Args&&... what);

template<typename Duration, typename... Args>
__unspecified__ timed_sync_send_tuple(actor_ptr whom,

Duration timeout,
any_tuple what);

A synchronous message is sent to the receiving actor’s mailbox like any other asynchronous
message. The response message, on the other hand, is treated separately.

The difference between sync_send and timed_sync_send is how timeouts are handled. The
behavior of sync_send is analogous to send, i.e., timeouts are specified by using after(...)
statements (see 7.3). When using timed_sync_send function, after(...) statements are
ignored and the actor will receive a sync_timeout_msg after the given duration instead.

8.1 Error Messages

When using synchronous messaging, libcppa’s runtime environment will send ...

• if the receiver is not alive:
sync_exited_msg { actor_addr source; std::uint32_t reason; };

• if a message send by timed_sync_send timed out: sync_timeout_msg

22

SYNCHRONOUS COMMUNICATION

8.2 Receive Response Messages

When sending a synchronous message, the response handler can be passed by either using
then (event-based actors) or await (blocking actors).

void foo(event_based_actor* self, actor testee) {
// testee replies with a string to ’get’
self->sync_send(testee, atom("get")).then(

on_arg_match >> [=](const std::string& str) {
// handle str

},
after(std::chrono::seconds(30)) >> [=]() {

// handle error
}

);
);

Similar to become, the then function modifies an actor’s behavior stack. However, it is used as
“one-shot handler” and automatically returns to the previous behavior afterwards.

8.3 Synchronous Failures and Error Handlers

An unexpected response message, i.e., a message that is not handled by given behavior, will
invoke the actor’s on_sync_failure handler. The default handler kills the actor by calling
self->quit(exit_reason::unhandled_sync_failure). The handler can be overridden
by calling self->on_sync_failure(/*...*/).

Unhandled timeout messages trigger the on_sync_timeout handler. The default handler kills
the actor for reason exit_reason::unhandled_sync_failure. It is possible set both error
handlers by calling self->on_sync_timeout_or_failure(/*...*).

void foo(event_based_actor* self, actor testee) {
// testee replies with a string to ’get’
// set handler for unexpected messages
self->on_sync_failure = [] {

aout << "received: " << to_string(self->last_dequeued()) << endl;
};
// set handler for timeouts
self->on_sync_timeout = [] {

aout << "timeout occured" << endl;
};
// set response handler by using "then"
timed_sync_send(testee, std::chrono::seconds(30), atom("get")).then(

[=](const std::string& str) { /* handle str */ }
);

23

SYNCHRONOUS COMMUNICATION

8.3.1 Continuations for Event-based Actors

libcppa supports continuations to enable chaining of send/receive statements. The functions then
returns a helper object offering the member function continue_with, which takes a functor f
without arguments. After receiving a message, f is invoked if and only if the received messages
was handled successfully, i.e., neither sync_failure nor sync_timeout occurred.

void foo(event_based_actor* self) {
actor d_or_s = ...; // replies with either a double or a string
sync_send(d_or_s, atom("get")).then(

[=](double value) { /* functor f1 */ },
[=](const string& value) { /* functor f2*/ }

).continue_with([=] {
// this continuation is invoked in both cases
// *after* f1 or f2 is done, but *not* in case
// of sync_failure or sync_timeout

});

24

MANAGEMENT & ERROR DETECTION

9 Management & Error Detection

libcppa adapts Erlang’s well-established fault propagation model. It allows to build actor subsys-
tem in which either all actors are alive or have collectively failed.

9.1 Links

Linked actors monitor each other. An actor sends an exit message to all of its links as part of its
termination. The default behavior for actors receiving such an exit message is to die for the same
reason, if the exit reason is non-normal. Actors can trap exit messages to handle them manually.

actor worker = ...;
// receive exit messages as regular messages
self->trap_exit(true);
// monitor spawned actor
self->link_to(worker);
// wait until worker exited
self->become (

[](const exit_msg& e) >> [=] {
if (e.reason == exit_reason::normal) {

// worker finished computation
else {

// worker died unexpectedly
}

}
);

9.2 Monitors

A monitor observes the lifetime of an actor. Monitored actors send a down message to all ob-
servers as part of their termination. Unlike exit messages, down messages are always treated
like any other ordinary message. An actor will receive one down message for each time it called
self->monitor(...), even if it adds a monitor to the same actor multiple times.

actor worker = ...;
// monitor spawned actor
self->monitor(worker);
// wait until worker exited
self->become (
on(const down_msg& d) >> [] {

if (d.reason == exit_reason::normal) {
// worker finished computation

} else {
// worker died unexpectedly

}
}

);

25

MANAGEMENT & ERROR DETECTION

9.3 Error Codes

All error codes are defined in the namespace cppa::exit_reason. To obtain a string repre-
sentation of an error code, use cppa::exit_reason::as_string(uint32_t).

normal 1 Actor finished execution without error
unhandled_exception 2 Actor was killed due to an unhandled exception

unallowed_function_call 3
Indicates that an event-based actor tried to use
blocking receive calls

unhandled_sync_failure 4
Actor was killed due to an unexpected syn-
chronous response message

unhandled_sync_timeout 5
Actor was killed, because no timeout handler
was set and a synchronous message timed out

user_shutdown 16 Actor was killed by a user-generated event

remote_link_unreachable 257
Indicates that a remote actor became unreach-
able, e.g., due to connection error

user_defined 65536 Minimum value for user-defined exit codes

9.4 Attach Cleanup Code to an Actor

Actors can attach cleanup code to other actors. This code is executed immediately if the actor has
already exited. Keep in mind that self refers to the currently running actor. Thus, self refers to
the terminating actor and not to the actor that attached a functor to it.

auto worker = spawn(...);
actor observer = self;
// "monitor" spawned actor
worker->attach_functor([observer](std::uint32_t reason) {

// this callback is invoked from worker
anon_send(observer, atom("DONE"));

});
// wait until worker exited
self->become (

on(atom("DONE")) >> [] {
// worker terminated

}
);

Note: It is possible to attach code to remote actors, but the cleanup code will run on the local
machine.

26

SPAWNING ACTORS

10 Spawning Actors

Actors are created using the function spawn. The easiest way to implement actors is to use func-
tors, e.g., a free function or lambda expression. The arguments to the functor are passed to spawn
as additional arguments. The function spawn also takes optional flags as template parameter.
The flag detached causes spawn to create a thread-mapped actor (opt-out of the cooperative
scheduling), the flag linked links the newly created actor to its parent – not available on top-level
spawn – and the flag monitored automatically adds a monitor to the new actor. Actors that make
use of the blocking API (see Section 15) must be spawned using the flag blocking_api. Flags
are concatenated using the operator +, as shown in the examples below.

#include "cppa/cppa.hpp"

using namespace cppa;

void my_actor1();
void my_actor2(event_based_actor*, int arg1, const std::string& arg2);
void ugly_duckling();

class my_actor3 : public event_based_actor { /* ... */ };
class my_actor4 : public sb_actor<my_actor4> {

public: my_actor4(int some_value) { /* ... */ }
/* ... */

};

// whenever we want to link to or monitor a spawned actor,
// we have to spawn it using the self pointer, otherwise
// we can use the free function ’spawn’ (top-level spawn)
void server(event_based_actor* self) {

// spawn function-based actors
auto a0 = spawn(my_actor1);
auto a1 = self->spawn<linked>(my_actor2, 42, "hello actor");
auto a2 = self->spawn<monitored>([] { /* ... */ });
auto a3 = spawn([](int) { /* ... */ }, 42);
// spawn thread-mapped actors
auto a4 = spawn<detached>(my_actor1);
auto a5 = self->spawn<detached + linked>([] { /* ... */ });
auto a6 = spawn<detached>(my_actor2, 0, "zero");
// spawn class-based actors
auto a7 = spawn<my_actor3>();
auto a8 = self->spawn<my_actor4, monitored>(42);
// spawn thread-mapped actors using a class
auto a9 = spawn<my_actor4, detached>(42);
// spawn actors that need access to the blocking API
auto aa = self->spawn<blocking_api>(ugly_duckling);
// compiler error: my_actor2 captures the implicit
// self pointer as event_based_actor* and thus cannot
// be spawned using blocking_api flag
/*-auto ab = self->spawn<blocking_api>(my_actor2);-*/

}

27

MESSAGE PRIORITIES

11 Message Priorities

By default, all messages have the same priority and actors ignore priority flags. Actors that should
evaluate priorities must be spawned using the priority_aware flag. This flag causes the actor
to use a priority-aware mailbox implementation. It is not possible to change this implementation
dynamically at runtime.

behavior testee(event_based_actor* self) {
// send ’b’ with normal priority
self->send(self, atom("b"));
// send ’a’ with high priority
self->send(message_priority::high, self, atom("a"));
// terminate after receiving a ’b’
return {

on(atom("b")) >> [=] {
aout(self) << "received ’b’ => quit" << endl;
self->quit();

},
on(atom("a")) >> [=] {

aout(self) << "received ’a’" << endl;
},

};
}

int main() {
// will print "received ’b’ => quit"
spawn(testee);
await_all_actors_done();
// will print "received ’a’" and then "received ’b’ => quit"
spawn<priority_aware>(testee);
await_all_actors_done();
shutdown();

}

28

NETWORK TRANSPARENCY

12 Network Transparency

All actor operations as well as sending messages are network transparent. Remote actors are
represented by actor proxies that forward all messages.

12.1 Publishing of Actors

void publish(actor whom, std::uint16_t port, const char* addr = 0)

The function publish binds an actor to a given port. It throws network_error if socket related
errors occur or bind_failure if the specified port is already in use. The optional addr param-
eter can be used to listen only to the given IP address. Otherwise, the actor accepts all incoming
connections (INADDR_ANY).

publish(self, 4242);
self->become (

on(atom("ping"), arg_match) >> [](int i) {
return make_cow_tuple(atom("pong"), i);

}
);

12.2 Connecting to Remote Actors

actor remote_actor(const char* host, std::uint16_t port)

The function remote_actor connects to the actor at given host and port. A network_error is
thrown if the connection failed.

auto pong = remote_actor("localhost", 4242);
self->send(pong, atom("ping"), 0);
self->become (

on(atom("pong"), 10) >> [=] {
self->quit();

},
on(atom("pong"), arg_match) >> [=](int i) {

return make_cow_tuple(atom("ping"), i+1);
}

);

29

GROUP COMMUNICATION

13 Group Communication

libcppa supports publish/subscribe-based group communication. Actors can join and leave groups
and send messages to groups.

std::string group_module = ...;
std::string group_id = ...;
auto grp = group::get(group_module, group_id);
self->join(grp);
self->send(grp, atom("test"));
self->leave(grp);

13.1 Anonymous Groups

Groups created on-the-fly with group::anonymous() can be used to coordinate a set of work-
ers. Each call to group::anonymous() returns a new, unique group instance.

13.2 Local Groups

The "local" group module creates groups for in-process communication. For example, a group
for GUI related events could be identified by group::get("local", "GUI events"). The
group ID "GUI events" uniquely identifies a singleton group instance of the module "local".

13.3 Spawn Actors in Groups

The function spawn_in_group can be used to create actors as members of a group. The
function causes the newly created actors to call self->join(...) immediately and before
spawn_in_group returns. The usage of spawn_in_group is equal to spawn, except for an
additional group argument. The group handle is always the first argument, as shown in the exam-
ples below.

void fun1();
void fun2(int, float);
class my_actor1 : event_based_actor { /* ... */ };
class my_actor2 : event_based_actor {

// ...
my_actor2(const std::string& str) { /* ... */ }

};
// ...
auto grp = group::get(...);
auto a1 = spawn_in_group(grp, fun1);
auto a2 = spawn_in_group(grp, fun2, 1, 2.0f);
auto a3 = spawn_in_group<my_actor1>(grp);
auto a4 = spawn_in_group<my_actor2>(grp, "hello my_actor2!");

30

PLATFORM-INDEPENDENT TYPE SYSTEM

14 Platform-Independent Type System

libcppa provides a fully network transparent communication between actors. Thus, libcppa needs
to serialize and deserialize messages. Unfortunately, this is not possible using the RTTI system of
C++. libcppa uses its own RTTI based on the class uniform_type_info, since it is not possible
to extend std::type_info.

Unlike std::type_info::name(), uniform_type_info::name() is guaranteed to return
the same name on all supported platforms. Furthermore, it allows to create an instance of a type
by name.

// creates a signed, 32 bit integer
cppa::object i = cppa::uniform_typeid<int>()->create();

However, you should rarely if ever need to use object or uniform_type_info.

14.1 User-Defined Data Types in Messages

All user-defined types must be explicitly “announced” so that libcppa can (de)serialize them cor-
rectly, as shown in the example below.

#include "cppa/cppa.hpp"
using namespace cppa;

struct foo { int a; int b; };

int main() {
announce<foo>(&foo::a, &foo::b);
// ... foo can now safely be used in messages ...

}

Without the announce function call, the example program would terminate with an exception,
because libcppa rejects all types without available runtime type information.

announce() takes the class as template parameter and pointers to all members (or getter/setter
pairs) as arguments. This works for all primitive data types and STL compliant containers. See
the announce examples 1 – 4 of the standard distribution for more details.

Obviously, there are limitations. You have to implement serialize/deserialize by yourself if your
class does implement an unsupported data structure. See announce_example_5.cpp in the
examples folder.

31

BLOCKING API

15 Blocking API

Besides event-based actors (the default implementation), libcppa also provides context-switching
and thread-mapped actors that can make use of the blocking API. Those actor implementations
are intended to ease migration of existing applications or to implement actors that need to have
access to blocking receive primitives for other reasons.

Event-based actors differ in receiving messages from context-switching and thread-mapped ac-
tors: the former define their behavior as a message handler that is invoked whenever a new
messages arrives in the actor’s mailbox (by using become), whereas the latter use an explicit,
blocking receive function.

15.1 Receiving Messages

The function receive sequentially iterates over all elements in the mailbox beginning with the
first. It takes a partial function that is applied to the elements in the mailbox until an element
was matched by the partial function. An actor calling receive is blocked until it successfully
dequeued a message from its mailbox or an optional timeout occurs.

self->receive (
on<int>().when(_x1 > 0) >> // ...

);

The code snippet above illustrates the use of receive. Note that the partial function passed
to receive is a temporary object at runtime. Hence, using receive inside a loop would cause
creation of a new partial function on each iteration. libcppa provides three predefined receive
loops to provide a more efficient but yet convenient way of defining receive loops.

32

BLOCKING API

//DON’T //DO

for (;;) {
receive (

// ...
);

}

receive_loop (
// ...

);

std::vector<int> results;
for (size_t i = 0; i < 10; ++i) {

receive (
on<int>() >> [&](int value) {

results.push_back(value);
}

);
}

std::vector<int> results;
size_t i = 0;
receive_for(i, 10) (

on<int>() >> [&](int value) {
results.push_back(value);

}
);

size_t received = 0;
do {

receive (
others() >> [&]() {

++received;
}

);
} while (received < 10);

size_t received = 0;
do_receive (

others() >> [&]() {
++received;

}
).until(gref(received) >= 10);

The examples above illustrate the correct usage of the three loops receive_loop, receive_for
and do_receive(...).until. It is possible to nest receives and receive loops.

self->receive_loop (
on<int>() >> [&](int value1) {

self->receive (
on<float>() >> [&](float value2) {

cout << value1 << " => " << value2 << endl;
}

);
}

);

33

BLOCKING API

15.2 Receiving Synchronous Responses

Analogous to sync_send(...).then(...) for event-based actors, blocking actors can use
sync_send(...).await(...).

void foo(blocking_actor* self, actor testee) {
// testee replies with a string to ’get’
self->sync_send(testee, atom("get")).await(

[&](const std::string& str) {
// handle str

},
after(std::chrono::seconds(30)) >> [&]() {

// handle error
}

);
}

34

STRONGLY TYPED ACTORS

16 Strongly Typed Actors

Strongly typed actors provide a convenient way of defining type-safe messaging interfaces. Unlike
untyped actorsd, typed actors are not allowed to use guard expressions. When calling become in
a strongly typed actor, all message handlers from the typed interface must be set.

Typed actors use handles of type typed_actor<...> rather than actor, whereas the template
parameters hold the messaging interface. For example, an actor responding to two integers with a
dobule would use the type typed_actor<replies_to<int, int>::with<double>>. All
functions for message passing, linking and monitoring are overloaded to accept both types of
actors.

16.1 Spawning Typed Actors

Typed actors are spawned using the function spawn_typed. The argument to this function call
must be a match expression as shown in the example below, because the runtime of libcppa
needs to evaluate the signature of each message handler.

auto p0 = spawn_typed(
on_arg_match >> [](int a, int b) {
return static_cast<double>(a) * b;

},
on_arg_match >> [](double a, double b) {

return make_cow_tuple(a * b, a / b);
}

);
// assign to identical type
using full_type = typed_actor_ptr<

replies_to<int, int>::with<double>,
replies_to<double, double>::with<double, double>

>;
full_type p1 = p0;
// assign to subtype
using subtype1 = typed_actor_ptr<

replies_to<int, int>::with<double>
>;

subtype1 p2 = p0;
// assign to another subtype
using subtype2 = typed_actor_ptr<

replies_to<double, double>::with<double, double>
>;

subtype2 p3 = p0;

35

STRONGLY TYPED ACTORS

16.2 Class-based Typed Actors

Typed actors are spawned using the function spawn_typed and define their message pass-
ing interface as list of replies_to<...>::with<...> statements. This interface is used in
(1) typed_event_based_actor<...>, which is the base class for typed actors, (2) the han-
dle type typed_actor<...>, and (3) typed_behavior<...>, i.e., the behavior definition for
typed actors. Since this is rather redundant, the actor handle provides definitions for the behavior
as well as the base class, as shown in the example below. It is worth mentioning that all typed
actors always use the event-based implementation, i.e., there is no typed actor implementation
providing a blocking API.

struct shutdown_request { };
struct plus_request { int a; int b; };
struct minus_request { int a; int b; };

typedef typed_actor<replies_to<plus_request>::with<int>,
replies_to<minus_request>::with<int>,
replies_to<shutdown_request>::with<void>>

calculator_type;

calculator_type::behavior_type
typed_calculator(calculator_type::pointer self) {

return {
[](const plus_request& pr) {

return pr.a + pr.b;
},
[](const minus_request& pr) {

return pr.a - pr.b;
},
[=](const shutdown_request&) {

self->quit();
}

};
}

class typed_calculator_class : public calculator_type::base {
protected: behavior_type make_behavior() override {

return {
[](const plus_request& pr) {

return pr.a + pr.b;
},
[](const minus_request& pr) {

return pr.a - pr.b;
},
[=](const shutdown_request&) {

quit();
}

};
}

};

36

STRONGLY TYPED ACTORS

void tester(event_based_actor* self, const calculator_type& testee) {
self->link_to(testee);
// will be invoked if we receive an unexpected response message
self->on_sync_failure([=] {

aout(self) << "AUT (actor under test) failed" << endl;
self->quit(exit_reason::user_shutdown);

});
// first test: 2 + 1 = 3
self->sync_send(testee, plus_request{2, 1}).then(

[=](int r1) {
assert(r1 == 3);
// second test: 2 - 1 = 1
self->sync_send(testee, minus_request{2, 1}).then(

[=](int r2) {
assert(r2 == 1);
// both tests succeeded
aout(self) << "AUT (actor under test) "

<< "seems to be ok"
<< endl;

self->send(testee, shutdown_request{});
}

);
}

);
}

int main() {
// announce custom message types
announce<shutdown_request>();
announce<plus_request>(&plus_request::a, &plus_request::b);
announce<minus_request>(&minus_request::a, &minus_request::b);
// test function-based impl
spawn(tester, spawn_typed(typed_calculator));
await_all_actors_done();
// test class-based impl
spawn(tester, spawn_typed<typed_calculator_class>());
await_all_actors_done();
// done
shutdown();
return 0;

}

37

COMMON PITFALLS

17 Common Pitfalls

17.1 Event-Based API

• The functions become and handle_response do not block, i.e., always return imme-
diately. Thus, one should always capture by value in lambda expressions, because all
references on the stack will cause undefined behavior if the lambda expression is executed.

17.2 Synchronous Messages

• A handle returned by sync_send represents exactly one response message. Therefore, it
is not possible to receive more than one response message.

• The handle returned by sync_send is bound to the calling actor. It is not possible to transfer
a handle to a response to another actor.

17.3 Sending Messages

• send(whom, ...) is defined as send_tuple(whom, make_any_tuple(...)). Hence,
a message sent via send(whom, self->last_dequeued()) will not yield the expected
result, since it wraps self->last_dequeued() into another any_tuple instance. The
correct way of forwarding messages is self->forward_to(whom).

17.4 Sharing

• It is strongly recommended to not share states between actors. In particular, no actor shall
ever access member variables or member functions of another actor. Accessing shared
memory segments concurrently can cause undefined behavior that is incredibly hard to find
and debug. However, sharing data between actors is fine, as long as the data is immutable
and its lifetime is guaranteed to outlive all actors. The simplest way to meet the lifetime
guarantee is by storing the data in smart pointers such as std::shared_ptr. Neverthe-
less, the recommended way of sharing informations is message passing. Sending data to
multiple actors does not necessarily result in copying the data several times. Read Section
3 to learn more about libcppa’s copy-on-write optimization for tuples.

17.5 Constructors of Class-based Actors

• You should not try to send or receive messages in a constructor or destructor, because the
actor is not fully initialized at this point.

38

APPENDIX

18 Appendix

18.1 Class option

Defined in header "cppa/option.hpp".

template<typename T>
class option;

Represents an optional value.

Member types
Member type Definition
type T

Member functions
option() Constructs an empty option
option(T value) Initializes this with value
option(const option&)
option(option&&)

Copy/move construction

option& operator=(const option&)
option& operator=(option&&)

Copy/move assignment

Observers

bool valid()
explicit operator bool()

Returns true if this has a value

bool empty()
bool operator!()

Returns true if this does not has a value

const T& get()
const T& operator*()

Access stored value

const T& get_or_else(const T& x) Returns get() if valid, x otherwise

Modifiers

T& get()
T& operator*()

Access stored value

39

APPENDIX

18.2 Using aout – A Concurrency-safe Wrapper for cout

When using cout from multiple actors, output often appears interleaved. Moreover, using cout

from multiple actors – and thus from multiple threads – in parallel should be avoided regardless,
since the standard does not guarantee a thread-safe implementation.

By replacing std::cout with cppa::aout, actors can achieve a concurrency-safe text out-
put. The header cppa/cppa.hpp also defines overloads for std::endl and std::flush
for aout, but does not support the full range of ostream operations (yet). Each write operation to
aout sends a message to a ‘hidden’ actor (keep in mind, sending messages from actor construc-
tors is not safe). This actor only prints lines, unless output is forced using flush. The example
below illustrates printing of lines of text from multiple actors (in random order).

#include <chrono>
#include <cstdlib>
#include <iostream>
#include "cppa/cppa.hpp"

using namespace cppa;
using std::endl;

int main() {
std::srand(std::time(0));
for (int i = 1; i <= 50; ++i) {

spawn<blocking_api>([i](blocking_actor* self) {
aout(self) << "Hi there! This is actor nr. "

<< i << "!" << endl;
std::chrono::milliseconds tout{std::rand() % 1000};
self->delayed_send(self, tout, atom("done"));
self->receive(others() >> [i, self] {

aout(self) << "Actor nr. "
<< i << " says goodbye!" << endl;

});
});

}
// wait until all other actors we’ve spawned are done
await_all_actors_done();
// done
shutdown();
return 0;

}

40

	Introduction
	Actor Model
	Terminology
	Actor Address
	Actor Handle
	Untyped Actors
	Typed Actor
	Spawning
	Monitoring
	Link

	First Steps
	Features Overview
	Supported Compilers
	Supported Operating Systems
	Hello World Example

	Copy-On-Write Tuples
	Dynamically Typed Tuples
	Casting Tuples

	Pattern Matching
	Basics
	Reducing Redundancy with ``argmatch'' and ``onargmatch''
	Atoms
	Wildcards
	Guards
	Placeholder Interface
	Examples for Guard Expressions

	Projections and Extractors

	Actors
	Implicit self Pointer
	Interface

	Sending Messages
	Replying to Messages
	Delaying Messages
	Forwarding Messages in Untyped Actors

	Receiving Messages
	Class-based actors
	Nesting Receives Using become/unbecome
	Timeouts
	Skipping Messages

	Synchronous Communication
	Error Messages
	Receive Response Messages
	Synchronous Failures and Error Handlers
	Continuations for Event-based Actors

	Management & Error Detection
	Links
	Monitors
	Error Codes
	Attach Cleanup Code to an Actor

	Spawning Actors
	Message Priorities
	Network Transparency
	Publishing of Actors
	Connecting to Remote Actors

	Group Communication
	Anonymous Groups
	Local Groups
	Spawn Actors in Groups

	Platform-Independent Type System
	User-Defined Data Types in Messages

	Blocking API
	Receiving Messages
	Receiving Synchronous Responses

	Strongly Typed Actors
	Spawning Typed Actors
	Class-based Typed Actors

	Common Pitfalls
	Event-Based API
	Synchronous Messages
	Sending Messages
	Sharing
	Constructors of Class-based Actors

	Appendix
	Class option
	Using aout – A Concurrency-safe Wrapper for cout

