On Thu, 12 Aug 2010, Shaun Jackman wrote:
Hi,
I have a directed graph where every vertex has a twin vertex. It is known ahead of time which pairs of vertices are twins. I want to remove as few vertices as possible from the graph such that no vertex and its twin is in the same connected component. Could someone suggest an appropriate algorithm?
Connected component or strongly connected component? I'm assuming for a directed graph that you mean SCC. When you remove a vertex, do you also remove its twin? Is there a relationship between an edge from A -> B and from twin(A) -> twin(B) (or twin(B) -> twin(A)), in the sense that those edges would need to be removed in pairs? That would be implied by needing to remove a vertex and its twin at the same time. Do you need to remove entire vertices, or would removing just edges be OK? Also, do you need an exact solution or would an approximation be acceptable if an exact algorithm was too inefficient? -- Jeremiah Willcock